create
根据已有 column 创建 column
dataframe["new_column"] = dataframe.apply(
lambda row: row.exist_column * 2, axis=1)
delete
删除列
df.drop('column_name', axis=1, inplace=True)
inplace 代表修改 df, 不用重新创建一个变量
删除多列
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
remove row by condition
dataframe.drop(dataframe[dataframe.location_ts.isnull()].index, inplace=True)
筛选
df[df['A'].isin([3, 6])]
edit
map default value
we can use map to update dataframe data by dict:
df['A'] = df['A'].map({'a': 1, 'b': 2, 'c': 3})
if A
column has value not in dict, it will be NaN, and it will raise error when serializing, so we need to give map a default value:
df['A'] = df['A'].map(lambda x: {'a': 1, 'b': 2, 'c': 3}.get(x, 0))
nan
replace nan
all_df = all_df.fillna(0)
check if nan
dataframe.column_filed.isnull()